A Hybrid Mixed Discontinuous Galerkin Method for Convection-Diffusion Problems
نویسندگان
چکیده
We propose and analyse a new finite element method for convection diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection-diffusion problems. By construction, the discrete solutions obtained for the limiting subproblems coincide with the ones obtained by the mixed method for the elliptic and the discontinuous Galerkin method for the limiting hyperbolic problem, respectively. We present a new type of analysis that explicitly takes into account the Lagrange-multipliers introduced by hybridization. The use of adequate energy norms allows to treat the purely diffusive, the convection dominated, and the hyperbolic regime in a unified manner. In numerical tests, we illustrated the efficiency of our approach and compare to results obtained with other methods for convection diffusion problems.
منابع مشابه
A Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems
We propose and analyse a new finite element method for convection diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection-diffusion problems. By construction...
متن کاملA hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems
We propose and analyse a new finite-element method for convection–diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin (DG) method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection–diffusion problems. By constru...
متن کاملA Combined Hybridized Discontinuous Galerkin / Hybrid Mixed Method for Viscous Conservation Laws
Recently, we have proposed a method for solving steady-state convection-diffusion equations, including the full compressible Navier-Stokes equations [17]. The method is a combination of a mixed Finite Element method for the diffusion terms, and a Discontinuous Galerkin method for the convection term. The method is fully implicit, and the globally coupled unknowns are the hybrid variables, i.e.,...
متن کاملAn Adjoint Consistency Analysis for a Class of Hybrid Mixed Methods
Hybrid methods represent a classic discretization paradigm for elliptic equations. More recently, hybrid methods have been formulated for convection-diffusion problems, in particular compressible fluid flow. In [25], we have introduced a hybrid mixed method for the compressible Navier-Stokes equations as a combination of a hybridized DG scheme for the convective terms, and an H(div,Ω)-method fo...
متن کاملHybridized Discontinuous Galerkin Method for Convection-Diffusion-Reaction Problems
In this paper, we propose a new hybridized discontinuous Galerkin method for the convection-diffusion-reaction problems with mixed boundary conditions. The coercivity of the convection-reaction part is achieved by adding an upwinding term. We give error estimates of optimal order in the piecewise H1-seminorm. Furthermore, we show that the approximate solution of our scheme is close to that of t...
متن کامل